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TABLE 3-1 Properties and Conventions Associated with the Common Amino Acids Found in Proteins

PK, values
Abbreviation/ PK, PK, PK, Hydropathy  Occurrence in
Amino acid symbol M. (—COOH) (—NHS‘L ) (R group) pl index* proteins (%)t
Nonpolar, aliphatic
R groups
Glycine Gly G 75 2.34 9.60 5.97 —0.4 1l
Alanine Ala A 89 2.34 9.69 6.01 1.8 7.8
Proline Pro P 115 1.99 10.96 6.48 1.6 5.2
Valine Val v 117 2.32 9.62 5.97 4.2 6.6
Leucine leu L 131 2:38 9.60 5.98 3.8 9.1
Isoleucine lle | 131 2.36 9.68 6.02 4.5 5.3
Methionine Met M 149 2.28 9.21 5.74 1.9 2.3
Aromatic R groups
Phenylalanine Phe F 165 1.83 9.13 5.48 2.8 3.9
Tyrosine Tyr Y 181 2.20 9.11 10.07 5.66 1.8 3.2
Tryptophan Tp W 204 2.38 9.39 5.89 —-0.9 1.4

*A scale combining hydrophobicity and hydrophilicity of R groups; it can be used to measure the tendency of an amino acid to seek an aqueous environment (— values) or a hy-
drophobic environment (+ values). See Chapter 11. From Kyte, J. & Doolittle, R.F (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157,
105-132.

TAverage occurrence in more than 1,150 proteins. From Doolittle, R.F. (1989) Redundancies in protein sequences. In Prediction of Protein Structure and the Principles of Protein Con-
formation (Fasman, G.D., ed.), pp. 599-623, Plenum Press, New York.



TABLE 3-1 Properties and Conventions Associated with the Common Amino Acids Found in Proteins

pK, values
Abbreviation/ PK, PK, [ Hydropathy  Occurrence in
Amino acid symbol M. (—COOH) (—NH; ) (R group) pl index* proteins (%)t
Polar, uncharged
R groups
Serine Ser S 105 221 9.15 5.68 —0.8 6.8
Threonine Thr T 119 2:11 9.62 5.87 =07 5.9
Cysteine Cys C 121 1.96 10.28 8.18 5.07 2.5 1.9
Asparagine Asn N 132 2.02 8.80 541 —~3.8 4.3
Glutamine Gin Q 146 2.17 9.13 5.65 —3.5 4.2
Positively charged
R groups
Lysine Lys K 146 2.18 8.95 10.53 9.74 -39 5.9
Histidine His H 155 1.82 9.17 6.00 7.59 —3.2 2.3
Arginine Arg R 174 2,17 9.04 12.48 10.76 —4.5 5.1
Negatively charged
R groups
Aspartate Asp D 133 1.88 9.60 3.85 2.77 =8.5 5.3
Glutamate Glu E 147 2.19 9.67 4.25 3.22 —3.5 6.3

*A scale combining hydrophobicity and hydrophilicity of R groups; it can be used to measure the tendency of an amino acid to seek an aqueous environment (— values) or a hy-
drophobic environment (+ values). See Chapter 11. From Kyte, J. & Doolittle, R.F. (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157,
105-132.

TAverage occurrence in more than 1,150 proteins. From Doolittle, R.F. (1989) Redundancies in protein sequences. In Prediction of Protein Structure and the Principles of Protein Con-
formation (Fasman, G.D., ed.), pp. 599-623, Plenum Press, New York.
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Polar, uncharged R groups
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Aromatic R groups
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Positively charged R groups
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TABLE 3-2 Molecular Data on Some Proteins

Molecular Number of Number of
weight residues polypeptide chains
Cytochrome ¢ (human) 13,000 104 1
Ribonuclease A (bovine pancreas) 13,700 124 1
Lysozyme (chicken egg white) 13,930 129 1
Myoglobin (equine heart) 16,890 153 1
Chymotrypsin (bovine pancreas) 21,600 241 3
Chymotrypsinogen (bovine) 22,000 245 1
Hemoglobin (human) 64,500 574 4
Serum albumin (human) 68,500 609 1
Hexokinase (yeast) 102,000 972 2
RNA polymerase (E. coli) 450,000 4,158 B
Apolipoprotein B (human) 513,000 4,536 1
Glutamine synthetase (E. coli) 619,000 5,628 12
Titin (human) 2,993,000 26,926 1




TABLE 3-3 Amino Acid Composition of
Two Proteins
Number of residues
per molecule of protein*

Amino Bovine Bovine
acid cytochrome ¢ chymotrypsinogen
Ala 6 22
Arg 2 4
Asn 5 15
Asp 3 8
Cys 2 10
Gin 3 10
Glu 9 5
Gly 14 23
His 3 2
lle 6 10
Leu 6 19
Lys 18 14
Met 2 2
Phe 4 6
Pro 4 9
Ser 1 28
Thr 8 23
Trp 1 8
Tyr 4 4
Val 3 23
Total 104 245

*In some common analyses, such as acid hydrolysis, Asp and Asn are not
readily distinguished from each other and are together designated Asx (or
B). Similarly, when Glu and GIn cannot be distinguished, they are together
designated Glx (or Z). In addition, Trp is destroyed. Additional procedures
must be employed to obtain an accurate assessment of complete amino
acid content.



TABLE 3-4 Conjugated Proteins

Class

Prosthetic group

Example

Lipoproteins

Glycoproteins
Phosphoproteins
Hemoproteins
Flavoproteins

Metalloproteins

Lipids

Carbohydrates
Phosphate groups
Heme (iron porphyrin)
Flavin nucleotides

lron
Zinc

Calcium
Molybdenum
Copper

[3,-Lipoprotein
of blood
Immunoglobulin G
Casein of milk
Hemoglobin
Succinate
dehydrogenase
Ferritin
Alcohol
dehydrogenase
Calmodulin
Dinitrogenase
Plastocyanin
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structure structure structure structure
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@ Large net positive charge
© Net positive charge

© Net negative charge

@ Large net negative charge
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negatively charged [\
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Protein mixture is added )

to column containing =
cation exchangers. E

123456
Proteins move through the column at rates determined by their
net charge at the pH being used. With cation exchangers, proteins
with a more negative net charge move faster and elute earlier.



Porous
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Protein molecules separate
by size; larger molecules
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TABLE 3-5 A Purification Table for a Hypothetical Enzyme

Fraction volume Total protein Activity Specific activity
Procedure or step (ml) (mg) (units) (units/mg)
1. Crude cellular extract 1,400 10,000 100,000 10
2. Precipitation with ammonium sulfate 280 3,000 96,000 32
3. lon-exchange chromatography 90 400 80,000 200
4. Size-exclusion chromatography 80 100 60,000 600
5. Affinity chromatography 6 3 45,000 15,000

Note: All data represent the status of the sample after the designated procedure has been carried out. Activity and specific activity are de-

fined on page 94.
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TABLE 3-6 The Isoelectric Points
of Some Proteins

Protein pl
Pepsin <1.0
Egg albumin 4.6
Serum albumin 4.9
Urease 5.0
[B-Lactoglobulin 5.2
Hemoglobin 6.8
Myoglobin 7.0
Chymotrypsinogen 9.5
Cytochrome ¢ 10.7

Lysozyme 11.0
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TABLE 3-7 The Specificity of Some Common
Methods for Fragmenting Polypeptide Chains

Reagent (biological source)*

Cleavage points®

Trypsin

(bovine pancreas)
Submaxillarus protease

(mouse submaxillary gland)
Chymotrypsin

(bovine pancreas)
Staphylococcus aureus V8 protease

(bacterium S. aureus)
Asp-N-protease

(bacterium Pseudomonas fragi)
Pepsin

(porcine stomach)
Endoproteinase Lys C

(bacterium Lysobacter

enzymogenes)

Cyanogen bromide

Lys, Arg (C)
Arg (C)

Phe, Trp, Tyr (C)
Asp, Glu (C)
Asp, Glu (N)
Phe, Trp, Tyr (N)

Lys (C)

Met (C)

*All reagents except cyanogen bromide are proteases. All are available

from commercial sources.

fResidues furnishing the primary recognition point for the protease or
reagent; peptide bond cleavage occurs on either the carbonyl (C) or the
amino (N) side of the indicated amino acid residues.



cuiS Procedure Result

Conclusion
Polypeptide has 38
amino acid residues. Tryp-
sin will cleave three times
(atone R (Arg) and two
K (Lys)) to give four frag-
ments. Cyanogen bromide
will cleave at two
M (Met) to give three
fragments.

E (Glu) is amino-
terminal residue.

@ placed at amino terminus
because it begins with E (Glu).

placed at carboxyl terminus
because it does not end with

R (Arg) or K (Lys).

overlaps with

@and,allowing

them to be ordered.

o J’\ " hydrolyze; separate A 5 H 2 R 1
w . amino acids cC 2 1 3 S 2
“Sed D4 K 2 Ti1
¢ 'E--;} | E 2 L 2 V1
5 F 1 M 2 Y 2
Polypeptide G 3 P 3
react with FDNB; hydrolyze;
separate amino acids
NP 2,4-Dinitrophenylglutamate
reduce detected
disulfide
bonds (if present)
..cleave with trypsin; @ GASMALIK
separate fragments; sequence
| by Edman degradation (2) EGAAYHDFEPIDPR
(3) DCVHSD
YLIACGPMTK
cleave with cyanogen
bromide; separate fragments;  (C-1) EGAAYHDFEPIDPRGASM
\sequence by Edman degradation @ TKDCVHSD
(¢3) ALIKYLIACGPM
establish @ @ @

sequence i
\q—» Amino

terminus

IEGAAYHDFEPlDPR%ASMALII&»LIACGPMTI&)CVHSD
[ I L — |

| Carboxyl
terminus

© © @



Amino acid
sequence (protein) GIn -Tyr- Pro—-Thr-IIe-Trp
N | B |

DNA sequence (gene) CAGTATCCTACGATTTCG
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TABLE 3-8 Effect of Stepwise Yield on Overall
Yield in Peptide Synthesis

Overall yield of final peptide (%)

_ , when the yield of each step is:
Number of residues in

the final polypeptide 96.0% 99.8%
11 66 98
21 44 96
31 29 94
51 13 90

100 1.7 82




